Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal AgroParisTech Université Paris-Saclay

INRA GABI Unit

GABI : Génétique Animale et Biologie IntégrativeUnité Mixte de Recherche INRA - AgroParisTech

Marie-Pierre SANCHEZ, Engineer

Marie-Pierre SANCHEZ
Genetic determinism of traits in cattle

INRAE, UMR 1313 Génétique Animale et Biologie Intégrative
Domaine de Vilvert, Bat 211, 78352 Jouy en Josas
Tel : +33 (0) 1 34 65 21 82
orcid.org/0000-0002-1371-5342

Email : marie-pierre.sanchez(at)inrae.fr

Research Team: Bovine Genetics and Genomics

CV :

  • Engineer INRAE
    • Since 2012: Cattle Genetics (G2B team)
    • 2000-2012: Pig Genetics
    • 1998-2000: Fish Genetics
  • 2016-2019: PhD thesis from Université Paris-Saclay, prepared at AgroParisTech, majoring in Animal Genetics
  • 1998: Master of Population Biology, Genetics and Ecoethology, minor in Quantitative Genetics, AgroParisTech, University of Tours, University of Rennes

Fields of Research :

Analysis of genetic variability of traits; Detection, fine mapping and characterization of QTL; Genetic determinism of milk composition and cheese-making traits; Genetic determinism of resistance to paratuberculosis; Quantitative Genetics; Genomic Selection

Other Activites :

  • Quality correspondent of the ISO9001 certified perimeter "Genetic evaluation of bovine breeding animals" (2013-2018)
  • Teaching (Master Priam)

Publications :

Sanchez M.P., Fritz S., Patry C., Delacroix-Buchet A., Boichard D. 2020. Milk protein variant and haplotype frequencies estimated from genotypes of more than one million bulls and cows of twelve French cattle breeds. J Dairy Sci, 103, ehead of print.

Van Den Berg I., Xiang R., Jenko J., Pausch H., Boussaha M., Tribout T., Gjuvsland A.B., Boichard D., Nordbø Ø., Sanchez M-P., Goddard M.E. 2019. Large scale multi breed meta-analysis for fat and protein percentage using imputed sequence variant genotypes in 94,321 cattle from eight dairy breeds. Genet Sel Evol, 52, 37.

Sanchez M.-P., Guatteo R., Davergne A., Grohs C., Taussat S., Fritz S., Boussaha M., Blanquefort P., Delafosse A., Joly A., Schibler L., Fourichon C., Boichard D. 2020. Identification of the ABCC4, IER3, and CBFA2T2 candidate genes for resistance to paratuberculosis from sequence-based GWAS in Holstein and Normande dairy cattle. Genet Sel Evol 52:14. https://doi.org/10.1186/s12711-020-00535-9

Laithier C., Wolf V., Brochard M., Sanchez M.-P., Gaudillière N., Minéry S., Fritz S., Gavoye S., Gaüzère Y., Rolet-Répécaud O., Notz E., Bouton Y., Boichard D., Grosperrin P. and Delacroix-Buchet A. 2020. FROM’MIR : Développer des outils de prédiction et de conseil pour maîtriser la fromageabilité des laits destinés à la fabrication des fromages traditionnels franc-comtois. Innovations Agronomiques 79, 227-244.

Sanchez M.P., Wolf V., Laithier C., El Jabri M., Beuvier E., Rolet-Repecaud O., Gaudilliere N., Minery S., Ramayo-Caldas Y., Tribout T., Michenet A., Boussaha M., Taussat S., Fritz S., Delacroix-Buchet A., Grosperrin P., Brochard M., Boichard D. 2019. Analyse génétique de la fromageabilité du lait de vache prédite par spectrométrie moyen infrarouge en race Montbéliarde. INRAE Prod Anim, 32, 379-398.

Sanchez M.P., Ramayo-Caldas Y., Wolf V., Laithier C., El Jabri M., Michenet A., Boussaha M., Taussat S., Fritz S., Delacroix-Buchet A., Brochard M., Boichard D. 2019. Sequence-based GWAS, network and pathway analyses reveal genes co-associated with milk cheese making properties and milk composition in Montbéliarde cows. Genet Sel Evol, 51, 34. https://doi.org/10.1186/s12711-019-0473-7

El Jabri M., Sanchez M.P., Trossat P., Laithier C., Wolf V., Grosperrin P., Beuvier E., Rolet-Répécaud O., Gavoye S., Gauzere Y., Belysheva O., Notz E., Boichard D., Delacroix-Buchet A. 2019. Comparison of Bayesian and PLS regression methods for mid-infrared prediction of cheese-making properties in Montbéliarde cows. J Dairy Sci., 102:6943–6958. https://doi.org/10.3168/jds.2019-16320

Sanchez M.P., El Jabri M., Minery S., Wolf V., Beuvier E., Laithier C., Delacroix-Buchet A., Brochard M., Boichard D. 2018. Genetic parameters for cheese-making properties and milk composition predicted from mid-infrared spectra in a large dataset of Montbéliarde cows. J Dairy Sci, 101, 10048–10061. https://doi.org/10.3168/jds.2018-14878

Sanchez M.P., Wolf V., El Jabri M., Beuvier E., Rolet-Repecaud O., Gauzere Y., Minery S., Brochard M., Michenet A., Taussat S., Barbat-Leterrier A., Delacroix-Buchet A., Laithier C., Fritz S., Boichard D. 2018. Short-communication: Confirmation of candidate causative variants on milk composition and cheese-making properties in Montbéliarde cows. J Dairy Sci, 101, 10076–10081. https://doi.org/10.3168/jds.2018-14986

Bouwman A.C., Daetwyler H.D., Chamberlain A.J., Hurtado Ponce C., Sargolzaei M., Schenkel F.S., Sahana G., Govignon-Gion A., Boitard S., Dolezal M., Pausch H., Brøndum R.F., Bowman P.J., Thomsen B., Guldbrandtsen B., Lund M.S., Servin B., Garrick D.J., Reecy J., Vilkki J., Bagnato A., Wang M., Hoff J.L., Schnabel R.D., Taylor J.F., Vinkhuyzen A.A.E., Panitz F., Bendixen C., Holm L.E., Gredler B., Hozé C., Boussaha M., Sanchez M.P., Rocha D., Capitan A., Tribout T., Barbat A., Croiseau P., Drögemüller C., Jagannathan V., Vander Jagt C., Crowley J.J., Intergenomics Consortium, Bieber A., Purfield D.C., Berry D.P., Emmerling R., Götz K.U., Van Tassell C.P, Fries R., Stothard P., Veerkamp R.F., Boichard D., Goddard M.E., Hayes B.J.  2018. Meta-analysis of genome wide association studies for the stature of cattle reveals common genes that regulate size in mammals. Nature Genetics, 50, 362-367. https://doi.org/10.1038/s41588-018-0056-5

Teissier M., Sanchez M-P., Boussaha M., Barbat-Leterrier A., Hozé C., Robert-Granié C., Croiseau P. 2018. Use of meta-analyses and joint analyses to select variants in whole genome sequences for genomic evaluation : an application in milk production of French dairy cattle breeds. J Dairy Sci. 101: 3126-3139. https://doi.org/10.3168/jds.2017-13587

Sanchez M.P., Govignon-Gion A., Croiseau P., Fritz S., Hoze C., Miranda G., Martin P., Barbat-Leterrier A., Brochard M., Boussaha M., Boichard D. 2017. Within-breed and multi-breed GWAS on imputed whole genome sequence variants reveal candidate mutations affecting milk protein composition in dairy cattle. Genet Sel Evol, 49:68. https://doi.org/10.1186/s12711-017-0344-z

Jonas D., Ducrocq V., Fritz S., Baur A., Sanchez M.P., Croiseau P. 2017. Genomic evaluation of regional dairy cattle breeds in single-breed and multibreed contexts. Journal of Animal Breeding and Genetics, 134:3-13. https://doi.org/10.1111/jbg.12249

Sanchez M.P., Govignon-Gion A., Ferrand M., Gele M., Pourchet D., Miranda G., Martin P., Brochard M., Boichard D. 2017. Short-communication: Genetic parameters for milk protein composition in the French Montbéliarde, Normande and Holstein dairy cattle breeds. J Dairy Sci, 100, 6371-6375. https://doi.org/10.3168/jds.2017-12663

Sanchez M.P. , Govignon-Gion A., Ferrand M., Gele M., Pourchet D., Amigues Y., Fritz S., Boussaha M., Capitan A., Rocha D., Miranda G., Martin P., Brochard M., Boichard D. 2016. Whole genome scan to detect SNP associated to milk protein composition in three French dairy cattle breeds. J Dairy Sci, 99, 8203–8215. http://dx.doi.org/10.3168/jds.2016-11437

Boichard D., Govignon-Gion A., Larroque H., Maroteau C., Palhiere I., Tosser-Klopp G., Rupp R., Sanchez M.P., Brochard M. 2014. Déterminisme génétique de la composition en acides gras et protéines du lait des ruminants. INRA Prod Anim, 27, 283-298.

Legarra A., Croiseau P., Sanchez M.P., Teyssèdre S., Sallé G., Allais S., Fritz S., Moreno C., Ricard A., Elsen J.M. 2014. A comparison of methods for whole-genome QTL fine mapping using dense markers in four livestock species. Genet. Sel. Evol., 47:6.http://dx.doi.org/10.1186/s12711-015-0087-7

San Cristobal M., Sanchez M.P., Mercat M.J., Rohart F., Liaubet L., Tribout T., Canlet C., Muller N., Molina J., Iannucelli N., Laurent B., Villa-Vialaneix N., Paris A., Milan D. 2014. Le métabolome, un moyen pour trouver de nouveaux biomarqueurs ? Viandes et produits carnés 2014-30-2-1.

Sanchez M.P., Tribout T., Iannuccelli N., Bouffaud M., Servin B., Dehais P., Muller D., Tenghe A., Mercat M.J., Bidanel J.P., Rogel-Gaillard C., Milan D., Gilbert H. 2014. Genome wide association study in a Large White commercial population for production traits: evidence of a haplotype affecting meat quality traits. Genet. Sel. Evol., 46:12. http://dx.doi.org/10.1186/1297-9686-46-12

Hernandez S.C., Hogg C.O., Billon Y., Sanchez M.P., Bidanel J.P., Haley C.S., Archibald A.L., Ashworth C.J. 2013. Secreted phosphoprotein 1 expression in endometrium and placental tissues of Hyperprolific Large white and Meishan gilts. Biology of Reproduction. 88, 120. http://dx.doi.org/10.1095/biolreprod.112.104679

Gondret F., Riquet J., Tacher S., Demars J., Sanchez M.P., Billon Y., Robic A., Bidanel J.P., Milan D. 2011. Towards candidate genes affecting body fatness at SSC7 QTL by expression analyses. Journal of Animal Breeding and Genetics. 129, 316-324. http://dx.doi.org/10.1111/j.1439-0388.2011.00965.x

Tortereau F., Sanchez M.P., Feve K., Gilbert H., Iannuccelli N., Billon Y., Milan D., Bidanel J.P., Riquet J. 2011. Progeny-testing of full-sibs IBD on a SSC2 QTL region highlights epistatic interactions for fatness traits in pigs. BMC Genetics. 12, 92. http://dx.doi.org/10.1186/1471-2156-12-92

Riquet J., Gilbert H., Servin B., Sanchez M.P., Iannuccelli N., Billon Y., Milan D., Bidanel J.P. 2011. A locally congenic backcross design in pig : a new regional fine QTL mapping approach miming congenic strains used in mouse. BMC Genetics. 12, 6. http://dx.doi.org/10.1186/1471-2156-12-6

Sanchez M.P., Iannuccelli N., Basso B., Foury A., Billon Y., Gandemer G., Gilbert H., Mormède P., Bidanel J.P., Larzul C., Riquet J., Milan D., Le Roy P. 2011. Microsatellite mapping of QTL affecting meat quality, stress hormones and production traits in Duroc x Large White F2 pigs. Animal 5, 167-174. http://dx.doi.org/10.1017/S1751731110001722

Demars J., Riquet J., Sanchez M.P., Billon Y., Hocquette J.F., Lebret B., Iannuccelli N., Bidanel J.P., Milan D., Gondret F. 2007. Metabolic and histochemical characteristics of fat and muscle tissues in homozygous or heterozygous pigs for the body composition QTL located on chromosome 7. Physiol Genomics 30: 232-241. http://dx.doi.org/10.1152/physiolgenomics.00270.2006

Sanchez M.P., Iannuccelli N., Basso B., Bidanel J.P., Billon Y., Gandemer G., Gilbert H., Larzul C., Legault C., Riquet J., Milan D., Le Roy P. 2007. Identification of QTL with effects on intramuscular fat content and fatty acid composition in a Duroc x Large White cross. BMC Genetics, 8:55. http://dx.doi.org/10.1186/1471-2156-8-55

Damon M., Louveau I., Lefaucheur L., Lebret B., Vincent A., Le Roy P., Sanchez M. P., Herpin P., Gondret F. 2006. Number of intramuscular adipocytes and fatty acid binding protein-4 content are significant indicators of intramuscular fat level in crossbred Large White X Duroc pigs. Journal of Animal Science, 84, 1083-1092. https://doi.org/10.2527/2006.8451083x

Sanchez M.P., Riquet J., Iannuccelli N., Gogué J., Demeure O., Billon Y., Caritez J.C., Burgaud G., Fève K., Bonnet M., Péry C., Lagant H., Le Roy P., Bidanel J.P., Milan D. 2006. Effects of QTL on chromosomes 1, 2, 4 and 7 for growth, carcass and meat quality traits in backcross Meishan x Large White pigs. Journal of Animal Science, 84, 526-537. https://doi.org/10.2527/2006.843526x

Demeure O., Sanchez M.P., Riquet J., Iannuccelli N., Demars J., Feve K., Gogue J., Billon Y., Caritez J.C., Milan D., Bidanel J.P. 2005. Exclusion of the SLA as candidate region and reduction of the position interval for the porcine chromosome 7 QTL affecting growth and fatness. Journal of Animal Science, 83, 1979-1987. https://doi.org/10.2527/2005.8391979x

Foury A., Devillers N., Sanchez M.P., Griffon H., Le Roy P., Mormède P. 2005. Stress hormones, carcass composition and meat quality in Large White x Duroc pigs. Meat Science, 69, 703-707. http://dx.doi.org/10.1016/j.meatsci.2004.11.002

Mambrini M., Sanchez M.P., Chevassus B., Labbé L., Quillet E., Boujard T 2004. Selection for growth increases feed intake and affects feeding behavior of brown trout. Livestock Prod. Sci., 88, 85-98. https://doi.org/10.1016/j.livprodsci.2003.10.005

Mambrini M., Médale F., Sanchez M.P., Recalde B., Chevassus B., Labbé L., Quillet E., Boujard T 2004. Selection for growth in brown trout increases feed intake capacity without affecting maintenance and growth requirements. J. Anim. Sci., 82, 2865-2875. https://doi.org/10.2527/2004.82102865x

Sanchez M.P., Bidanel J.P., Zhang S., Naveau J., Burlot T., Le Roy P. 2003. Likelihood and bayesian approaches reveal major genes affecting body composition, carcass, meat quality and number of good teats in a Chinese European pig line. Genet. Sel. Evol., 35, 385-402. http://dx.doi.org/10.1051/gse:2003030

Sanchez M.P., Chevassus B., Labbé L., Quillet E., Mambrini M. 2001. Selection for growth of brown trout (Salmo trutta) affects feed intake but not feed efficiency. Aquat. Living Resour., 14, 41-48. https://doi.org/10.1016/S0990-7440(00)01103-7