Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal AgroParisTech Université Paris-Saclay


GABI : Génétique Animale et Biologie IntégrativeUnité Mixte de Recherche INRA - AgroParisTech

Andrea RAU, Junior Research Scientist

Gene regulatory networks, analysis of high-throughput sequencing data (RNA-seq), mixture models, Bayesian analysis, approximate Bayesian computation (ABC), analysis of genomic and transcriptomic data

INRA UMR 1313 Génétique Animale et Biologie Intégrative
Domaine de Vilvert, Bat 211, 78352 Jouy en Josas
Phone : +33 (0) 1 34 65 22 82 Fax : +33 (0) 1 34 65 22 10

Email: andrea.rau(at)

Team : Population, Statistics, and Genome (PSGen)


Since 2011: Junior research scientist, INRA (Jouy-en-Josas, France)
2010 – 2011: Post-doctoral researcher, Inria Saclay – Île-de-France (Orsay, France)
2007 – 2010: Ph.D. in Statistics, Purdue University (West Lafayette, Indiana, USA)
2005 – 2007: M.S. (Master of Science) in Applied Statistics, Purdue University (West Lafayette, Indiana, USA)
2001 – 2005: B.A. (Bachelor of Arts) in French and B.A. in Mathematics with a concentration in Statistics, Saint Olaf College (Northfield, Minnesota, USA)

Fields of research :

Gene regulatory networks, analysis of high-throughput sequencing data (RNA-seq), mixture models, Bayesian analysis, approximate Bayesian computation (ABC), analysis of genomic and transcriptomic data

Other activities :

Recent Publications and other Productions

Statistics methods

  1. Monneret, G., Jaffrézic, F., Rau, A., Nuel, G. (2015). Estimation d’effets causaux dans les réseaux de régulation génique : vers la grande dimension. Revue d’intelligence articielle, accepted.
  2. Rau, A., Maugis-Rabusseau, C., Martin-Magniette, M.-L., Celeux, G. (2015) Co-expression analysis of high-throughput transcriptome sequencing data with Poisson mixture models. Bioinformatics, doi: 10.1093/bioinformatics/btu845.
  3. Rau, A., Marot, G. and Jaffrézic, F. (2014) Differential meta-analysis of RNA-seq data from multiple studies. BMC Bioinformatics, 15:91.
  4. Nuel, G., Rau, A., and Jaffrézic, F. (2013) Using pairwise ordering preferences to estimate causal effects in gene expression from a mixture of observational and intervention experiments. Quality Technology and Quantitative Management 11(1):23-37.
  5. Rau, A., Jaffrézic, F., and Nuel, G. (2013) Joint estimation of causal effects from observational and intervention gene expression data. BMC Systems Biology 7:111.
  6. Gallopin, M. Rau, A., and Jaffrézic, F. (2013). A hierarchical Poisson log-normal model for network inference from RNA sequencing data. PLoS One 8(10): e77503.
  7. Rau, A., Gallopin, M., Celeux, G., and Jaffrézic, F. (2013). Data-based filtering for replicated high-throughput transcriptome sequencing experiments. Bioinformatics 29(17): 2146-2152.
  8. Dillies, M.-A.*, Rau, A.*, Aubert, J.*, Hennequet-Antier, C.*, Jeanmougin, M.*, Servant, N.*, Keime, C.*, Marot, G., Castel, D., Estelle, J., Guernec, G., Jagla, B., Jouneau, L., Laloë, D., Le Gall, C., Schaëffer, B., Charif, D., Le Crom, S.*, Guedj, M.*, and Jaffrézic, F*. (2012). A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Briefings in Bioinformatics (in press). doi:10.1093/bib/bbs046. *These authors contributed equally to this work.
  9. Rau, A., Jaffrézic, F., Foulley, J.-L., and Doerge, R. W. (2012). Reverse engineering gene regulatory networks using approximate Bayesian computation. Statistics and Computing, 22: 1257-1271.
  10. Rau, A., Jaffrézic, F., Foulley, J.-L., and Doerge, R. W. (2010). An empirical Bayesian method for estimating biological networks from temporal microarray data. Statistical Applications in Genetics and Molecular Biology: Vol. 9: Iss. 1, Article 9.

Statistics applications

  1. Endale Ahanda, M.-L., Zerjal, T., Dhorne-Pollet, S., Rau, A., Cooksey, A., and Giuffra, E. (2014) Impact of the genetic background on the composition of the chicken plasma miRNome in response to a stress. PLoS One, 9(12): e114598.
  2. Brenault, P., Lefevre, L. Rau, A., Laloë, D., Pisoni, G., Moroni, P., Bevilacquia, C. and Martin, P. (2013) Contribution of mammary epithelial cells to the immune response during early stages of a bacterial infection to Staphylococcus aureus. Veterinary Research 45:16.
  3. Furth, A., Mandrekar, S., Tan, A. Rau, A., Felten, S., Ames, M. Adjei, A. Erlichman, C. and Reid, J. (2008). A limited sample model to predict area under the drug concentration curve for 17-(allylamino)-17-demethoxygeldanamycin and its active metabolite 17-(amino)-17-demethoxygeldanomycin. Cancer Chemotherapy Pharmacology 61(1): 39-45.


Albert, I., Ancelet, S., David, O., Denis, J.-B., Makowski, D., Parent, É., Rau, A., and Soubeyrand, S. (expected 2015).Initiation à la statistique bayésienne : Bases théoriques et applications en alimentation, environnmenet, épidémiologie et génétique : Éditions Ellipses, collection références sciences.