Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free:

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site:, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Google Analytics

Targeted advertising cookies


The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at or by post at:

24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal


Unité de Virologie et Immunologie Moléculaires

Protein macro-assembly and Prion diseases

Scientific projects

The main field of investigation of the Protein macro-assembly and Prion diseases research group aims at understanding the relationship between protein structural information transfer and prion replication and neurotoxicity.

To achieve this goal, our team covers a broad spectrum of scientific expertise, from biophysics and biochemistry to prion biology per se: cell culture and transgenic mouse models (collaboration with J-L. Vilotte's team, INRA - GABI Unit).

The results published by the team address major topics in the prion field:

  • Prion diversity and evolution under selective pressure (Beringue et al., Science 2012, PloS Pathogens 2006, J Neuroscience 2007, PLoS one 2008, Emerging Infectious Diseases 2008)
  • Identification of the minimal structural perturbationinitiating prion replication (Xu et al., JBC 2011, FASEB J 2011, Prigent et al., Prion 2011)
  • Oligomerization pathways of PrP and other misfolded proteins (Chakroun et al., FASEB J 2010, Eghiaian et al., PNAS 2007)
  • Demonstration of a strain-dependent relationship between infectivity and the size of misfolded PrP assemblies, using fractionation methods (Tixador et al., PLoS Pathogens 2010)
  • Deciphering molecular events leading to neuronal death with CNS primary cultures permissive to prion replication (Cronier et al., PNAS 2004, J Virol 2007 and FASEB J 2012)
  • Study of normal/abnormal PrP and more recently Shadoo biochemistry (Dron, Moudjou et al., JBC 2010, Moudjou et al., Neurochem int 2007, unpublished)